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A SPECTROSCOPIC SYSTEM FOR HIGH−SPEED 
INSPECTION OF POULTRY CARCASSES

K. Chao,  Y. R. Chen,  D. E. Chan

ABSTRACT. A visible/near−infrared spectroscopic system for high−speed on−line poultry carcass inspection was developed
and demonstrated. The inspection system, which was an area scanning system designed to measure the interactance spectra
of poultry carcasses in the visible to near−infrared regions, consisted of a fiber−optic probe, a spectrograph, a spectroscopic
charge coupled device detector, a quartz tungsten halogen light source, an industrial computer, and in−house developed soft-
ware modules. On−line trials of the visible/near−infrared chicken inspection system were conducted during a 5−day period
in a poultry processing plant in Athens, Georgia. Spectra (431 to 943 nm) of 450 wholesome and 426 unwholesome chicken
carcasses were measured. The instrument measured the spectra of veterinarian−selected carcasses on a processing line run-
ning at speeds of 140 and 180 birds/min. Results showed this visible/near−infrared system can be used to differentiate between
wholesome and unwholesome poultry carcasses at high speeds. For the 140−bird/min line speed, the best model achieved
classification accuracies of 95% for wholesome and 92% for unwholesome birds. For the 180−bird/min line speed, the best
model achieved classification accuracies of 94% and 92% for wholesome and unwholesome birds, respectively. The system
is ready to be implemented for operation on high−speed poultry processing lines.

Keywords. Automation, Food safety, Poultry inspection, Modeling, Visible/near−infrared spectroscopy.

utomatic processing systems are needed in the
poultry industry to improve product safety, quali-
ty, consistency, and increase processing efficien-
cy by increasing line throughputs and reducing

wastewater output. One of the most important aspects of au-
tomation in poultry processing systems is the inspection of
poultry carcasses. Currently, each chicken intended for sale
to U.S. consumers is required by law to be inspected post−
mortem by a USDA/FSIS (United States Department of Agri-
culture/Food Safety and Inspection Service) inspector for its
wholesomeness (USDA, 1984). These inspectors visually ex-
amine the exterior, the inner surfaces of the body cavity, and
the organs of each carcass for indications of diseases or de-
fects. For effective inspection and occupational consider-
ations, each inspector is limited to a maximum of
35 birds/min. This current inspection system limits the pro-
duction efficiency of processing plants that are seeking to sat-
isfy increasing consumer demand for poultry products. One
possible solution to this problem is for poultry processing
plants to install on−line instrumental inspection systems that
can accurately screen for wholesome carcasses. Inspectors
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then would only have to “re−inspect” questionable carcasses
to insure that wholesome carcasses are not discarded. This
approach would dramatically reduce the number of birds re-
quiring human inspection. An obvious benefit of automatic
poultry inspection would be improved overall production ef-
ficiency of the processing plants.

Most poultry processing plants in the United States
currently use one of two evisceration configurations, either
a Stream−line Inspection System (SIS) or a New Efficient
Line Speed (NELS) system. Under SIS, an Evisceration Line
operates at 70 shackles/min with two USDA inspection
stations on it. A NELS Evisceration Line runs at 91 shackles/
min with three USDA inspection stations. At each inspection
station, the USDA inspector works with the aid of a helper
and a trimmer. Figure 1 shows the typical layout of a poultry
slaughter system with one Kill Line feeding two Evisceration
Lines. On the Kill Line, birds are stunned, bled, scalded, and
defeathered,  and heads and paws are removed, before
rehanging onto the Evisceration Line. Developing an auto-
mated inspection system for operation on the Kill Line
presents two major benefits. First, with a single rejection
point on the Kill Line, no condemnable birds would enter the
Evisceration Line, allowing for better hygiene, no empty
shackles, and higher line speed on the Evisceration Line.
Second, working with known technology to remove rejected
birds from the Kill Line, such a system would be easily
integrated into product−tracking systems. To operate on the
Kill Line, any automated inspection system must be able to
function at the high speeds of the Kill Line, currently at
140 or 180 birds per minute (bpm).

Two major conditions can cause a carcass to be removed
from the processing line (USDA, 1998). The first is an
infectious condition, such as septicemia/toxemia. Septice-
mia/toxemia  is a systemic disease caused by pathogenic
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Figure 1. Poultry processing line layout. RH = rehanger; bpm = birds per minute.

microorganisms in the blood, and such carcasses often show
dark red skin discolorations. The second type is Avian
Disease, which includes leukosis complex, airsacculitis,
ascites, cadaver, and inflammatory process (IP), among
others. Airsacculitis is inflammation of the air sacs. Ascites
is characterized by excess fluid in the air sacs and body
cavities. Improper slaughter cuts or inadequate bleeding time
can result in Cadaver carcasses. Systemic conditions, or
localized conditions with systemic symptoms, require con-
demnation of entire carcasses. However, carcasses showing
localized conditions without systemic symptoms can be
further reprocessed, such as vacuum removal of excess fluid
in the body cavities or portioning of carcass parts.

Spectral imaging techniques have been shown to be useful
for detecting surface discolorations and contaminations for
automated poultry carcass inspection (Daley et al., 1994;
Park et al., 1996; Lawrence et al., 2002; Chao et al., 2002).
Visible/Near−Infrared (Vis/NIR) spectroscopy has been
shown capable of detecting systemic conditions manifesting
in skin and tissue changes. A Vis/NIR spectroscopy tech-
nique was first used to classify wholesome and unwholesome
carcasses by Chen and Massie (1993). Optimal wavelengths
for correlating the spectral reflectance and interactance with
the condition of the poultry carcasses were obtained. They
concluded that this technique can be used to separate
wholesome carcasses from the unwholesome carcasses with
a classification accuracy of 93% for wholesome carcasses
and 96% for the unwholesome carcasses.

A Vis/NIR spectroscopic (471 to 964 nm) system was used
for classifying poultry carcasses on−site at a slaughter plant
(Chen et al., 1996). Fresh carcasses were taken off−line, and
the Vis/NIR probe was placed in direct contact with each
sample for a stationary reflectance measurement of about 2 s.
Classification of poultry carcasses into wholesome, septice-
mia/toxemia,  and cadaver classes were achieved with an
average accuracy of 93%.

A transportable photodiode array spectroscopic system
was then developed, and on−line trials were performed
during an 8−day period in a chicken processing plant in New
Holland, Pennsylvania (Chen et al., 2000). Spectra (470 to
960 nm) of 1750 (1174 wholesome and 576 unwholesome)
chicken carcasses were measured. The instrument measured
the spectra of veterinarian−selected carcasses running on a
processing line at 70 bpm. The detection time was 300 ms.
Classification models, using principal component analysis as
a data pretreatment for input into neural networks, were able
to classify the carcasses with a success rate of 95%. The
results showed promise for using a Vis/NIR spectroscopic
system to separate unwholesome from wholesome carcasses
on−line in a poultry−processing environment.

Based on previous studies, a new transportable Vis/NIR
spectroscopic system with improved data acquisition, proc-
essing, and modeling functionality was developed in order to
operate on high−speed processing lines. This article reports
on the results of testing this system at a commercial poultry
processing facility.

MATERIALS AND METHODS
CHICKEN SAMPLES

Broilers were processed at a commercial poultry process-
ing plant in Athens, Georgia. Chicken carcasses from the
evisceration line were identified as “wholesome and passed”
or “unwholesome” by FSIS inspectors on−site. The unwhole-
some chicken carcasses were identified according to the FSIS
condemnation disposition criteria (i.e., exhibit signs of
systemic conditions) that may render the carcass and its parts
adulterated.  A total of 426−unwholesome carcasses (92 sep-
ticemia,  256 airsacculitis, 57 ascites, 21 IP) and 450−in-
spected and passed wholesome carcasses were collected over
a 5−day period in May of 2003.



685Vol. 20(5): 683−690

POULTRY INSPECTION SYSTEM
The ISL poultry inspection system is an area (poultry

carcass) scanning system designed to measure the interac-
tance spectra of poultry carcasses in the VIS to NIR regions.
The poultry inspection system consisted of a fiber−optic
probe, a spectrograph, a spectroscopic CCD (Charge
Coupled Device) detector, a quartz tungsten halogen light
source, an industrial computer, and in−house developed
software modules.

Equipment

A bifurcated fiber−optic probe (Schott−Fostec, Auburn,
N.Y.) was designed and fabricated to measure light reflec-
tance in poultry carcass. The probe, as shown in figure 2,
consisted of inner and outer fiber−optic bundles. Fibers of the
outer optic bundles transmitted light to the chicken carcass,
and fibers of the inner optic bundle returned reflected light to
a photo detector. The outer bundles were angled 10 degrees
inward, providing a minimum working distance of approxi-
mately 2 cm with a 200−mm2 illuminated spot (approximate-
ly 16 mm diameter). Light from a 100−W quartz tungsten
halogen light bulb was focused on the light source circular
end of the outer optical bundles with the use of a condensing/
imaging lens assembly (f/1.8, 33−mm aperture, UV−grade
fused silica). This light energy traveled though the fiber−op-
tic cable and exited by means of the concentric ring of outer
optical bundles to illuminate samples. After interacting with
the chicken sample, the light energy was then collected
through the central 7.5−mm diameter aperture. Transmitted
through the inner optic fiber, the light exited through a 4−mm
high × 50−µm wide slit. The spectrograph (MS125, Oriel
Instruments, Stratford, Conn.) had a focal length of 120 mm
and a grating ruling of 400 lines/mm. The fixed entrance slit
of the spectrograph was 3 mm high × 10 µm wide. Light
reflectance was measured using a 1024− × 128− (pixel size
of 26 �m2) CCD detector (Oriel model 78440). The CCD
detector was thermoelectrically cooled, front illuminated
with UV coating, and had a spectral response from 180 to
1000 nm with a maximum readout time of 300 spectra/s with
a 1024−pixel array (full vertical binning). The CCD detector

Figure 2. Schematic of the bifurcated fiber−optic probe (all dimensions in
mm).

was connected to an analog to digital conversion board (Oriel
model CCI−001) installed in an industrial computer.

Software Modules

The Automated Poultry Inspector (API) software was
developed to integrate hardware components for automated
poultry carcass inspection. The LabView (National Instru-
ments, Austin, Tex.) programming language was utilized to
develop the API software. The front panel of the API, shown
in figure 3, consisted of four primary functions: system
initialization,  data collection, data analysis and modeling,
and prediction of poultry carcasses.

The system initialization module utilized the 32−bit driver
(ATMCD32D.DLL, Oriel Instruments, Stratford, Conn.) to
initialize  the CCD detector and set CCD temperature control,
data acquisition mode, exposure time, and data readout
mode. After system initialization, the data collection module
enabled real−time data acquisition and data storage in a
database (Access, Microsoft Corp., Redmond, Wash.). The
raw spectra (1024 points) were recorded as percentage
reflectance.  The spectra were processed in real−time by a
9−point running mean, and then the second difference (S”)
was calculated according to the formula

gnng−nn SS2SS ++×−=′′  (1)

where Sn is the spectral value at point n, and g is the gap in
data points. A g = 31 was used. The second difference was
applied to reduce shifting baseline effects and isolate
overlapping peaks. Then every fifth point was taken,
resulting in a reduced second difference of 190 data points.
Data analysis was performed on these reduced second
difference spectra. The Principal Component Analysis
(PCA) algorithm (Wold and Sjostrom, 1977) was implement-
ed in the API data analysis module. The PCA method
approximates the spectral vector of a poultry carcass with a
linear combination of set uncorrelated (orthogonal) vectors:

kk332211 Ca....CaCaCaY ++++≅  (2)

where Y is the spectral vector, Ck is the kth factor
(component),  and ak is the kth coefficient of the linear
combination.  Coefficients a1 to ak are called the scores of the
spectral vector. In this way, the dimension of the spectra in a
wavelength space can be transformed into a vector space with
k dimensions spanned by the k factors. Using the PCA as
preprocessor, multilayer perceptions (MLP) were available
in the API software for classification of chicken carcasses.
For the MLP classifier, the principal components were
calculated from a sample data set. Each spectrum was
approximated by a linear combination of these principal
components. The scalar coefficients (scores) of this linear
combination were then calculated for that sample. The scores
were then used as inputs into the MLP. The MLP was
pre−configured to one input layer, one layer of hidden nodes,
and one output layer with two nodes. Learning algorithms,
including the generalized delta−rule (Rumelhart et al., 1986)
and Qprop (Fahlman, 1988), were applied to the MPL
classifier.

After off−line development of the classification models,
parameters (including weights and biases from the optimized
neural network models) are saved and then incorporated into
the on−line prediction module of the API software. In
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Figure 3. The Automatic Poultry Inspector (API) – main panel.

real−time operation, the prediction module can be used to
immediately classify carcasses as wholesome or unwhole-
some from the spectral data acquired on−line.

PROCEDURES
Chicken carcasses were identified as wholesome or

unwholesome by FSIS inspectors, placed onto portable
hang−back racks by the inspectors’ helpers, and collected
on−site at a Conagra poultry processing plant in Athens,
Georgia. The inspected chicken carcasses were immediately
transported to a nearby room for spectral data acquisition.
Chicken carcasses were manually hung on the shackles of a
17.7−m overhead conveyor running through a rectangular
loop (6.7 × 3.1 m). The overhead conveyor was equipped
with a variable frequency−controlled drive system. Line
speeds at 140 and 180 birds/min were preset for this
experiment.  Before collecting spectra on chicken carcasses,
reference and background measurements were taken. To
establish a spectrally flat, repeatable, high−energy reference,
a reference spectrum was collected by placing the fiber−optic
probe 2 cm from a 14−mm thick piece of Spectralon
reflectance target (Labsphere, Sutton, N.H.) of approximate-
ly 99% absolute reflectance throughout the wavelength
region examined. A background measurement was taken, to
compensate for the zero energy signal, by placing the optical
probe 2 cm from the bottom of a black cylindrical Teflon�
sample cell with the light source turned off. Spectra were
recorded as percent reflectance according to the formula:

)background(reference

)backgroundereflectanc(sample100
eReflectanc%

−
−×=  (3)

During spectra acquisition, the API data collection
module was used to control the CCD detector, which was set
at three accumulated scans with full vertical binning

resulting in 1024 data points. The single−scan exposure time
was 20 ms; consequently, a single chicken carcass was
scanned over a total of 60 ms. A photoelectric sensor (Model
QS30LDLQ, Banner Engineering Corp., Minneapolis,
Minn.) was used to synchronize the data acquisition with bird
position in the field of view. At 140 bpm, 900 wholesome and
852 unwholesome spectra were collected (two for each bird).
Another 900 wholesome and 852 unwholesome spectra (two
for each bird) were collected at 180 bpm. Afterward, the FSIS
veterinary medical officer examined the wholesome or
unwholesome condition of each bird, including specific
postmortem conditions, and each diagnosis was recorded for
correlation to the spectral database.

CLASSIFICATION MODELING

The raw spectra were recorded as percentage reflectance,
1024 points, 431.0 to 943.5 nm spaced 0.5009 nm apart. A
9−point running average and second difference with gap =
31 points was applied to each spectrum. Selection of every
fifth point further reduced each spectrum to 190 points
(450.6 to 924.0 nm).

The data was divided into three sets for the MLP
classification method: training, test, and validation. The
wholesome and unwholesome spectra sets were merged, in
the order collected, to form one data set for each line speed.
Every third spectrum, starting with the first, was used for
training; every third spectrum, starting with the second, was
used for testing; and every third spectrum, starting with the
third, was used for validation. This division of data resulted
in three separate datasets, each containing 300 wholesome
and 284 unwholesome spectra. The principal components
were calculated from the training set. Scores were then
calculated for each spectrum in the training, testing, and
validation sets. The numbers of input nodes to the MLP used
for this study were 10, 20, and 30. The corresponding
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numbers of hidden nodes were derived based on the square
root of the input nodes, i.e. 3, 4, and 5, respectively.

The scores were then used as inputs into a feed−forward−
back−propagation MLP. The output nodes were (0 1) or (1 0)
depending on whether the sample was identified to be
wholesome or unwholesome by the veterinarian. The MLP
models were trained on scores from the training set. Scores
from the test set were used to decide which network model
and how much training was optimal. The validation set was
then used to measure the performance of the model,
independent of the training and testing datasets. Two learning
strategies, delta and cumulative delta, and two transfer
functions, tan h and sigmoid, (Rumelhart et al., 1986) were
used for a total of four models for each training/validation/
testing split of data.

RESULTS AND DISCUSSION
The average reflectance spectra of wholesome and

unwholesome chicken samples are shown in figures 4a and
4b for line speed at 140 and 180 bpm, respectively. With the
exception of baseline variations, the spectra of wholesome
and unwholesome chickens were similar. The overall vertical
offset of a particular spectrum was caused by variable scatter
and surface reflectance, and small changes in distance to the
sample, which have little to do with the category characteris-
tics. To reduce visual impact of shifting baseline effects and
isolate overlapping peaks, second differences (calculated
with a gap size of 15.5 nm) were determined for all
wholesome and unwholesome chicken samples. The mean
second difference spectra were plotted for wholesome and
unwholesome samples and are shown in figure 5a and 5b for
line speed at 140 and 180 bpm, respectively. There were
characteristic  differences in absorption (peaks) and reflec-
tance (valleys) between wholesome and unwholesome
chickens. The most distinctive difference in absorption bands
(peaks) among the wholesome and unwholesome samples
occurred at 458, 490, 540, and 574 nm. The valleys occurred
at 514, 556, and 592 nm and to a lesser extent at 716 and

Figure 4a. Mean reflectance spectra (solid line) of wholesome (black) and
unwholesome (gray) chicken carcasses, with one standard deviation enve-
lope (dotted line) at 140 birds per minute.

Figure 4b. Mean reflectance spectra (solid line) of wholesome (black) and
unwholesome (gray) chicken carcasses, with one standard deviation enve-
lope (dotted line) at 180 birds per minute.

Figure 5a. Mean second difference spectra of wholesome (black) and un-
wholesome (gray) chicken carcasses at 140 birds per minute.

Figure 5b. Mean second difference spectra of wholesome (black) and un-
wholesome (gray) chicken carcasses at 180 birds per minute.
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816 nm. Interestingly, at 740 and 835 nm, there were
differences in absorption among the wholesome and un-
wholesome chicken carcasses.

For well−bled meat, the major pigment is determined at
the meat surface by the relative amounts of three forms of
myoglobin, i.e. deoxymyoglobin, metmyoglobin, and oxy-
myoglobin (Kinsman et al., 1994; Swatland, 1989). The
deoxymyoglobin and oxymyoglobin components coexisted
with metmyoglobin in both wholesome and unwholesome
chicken meats and the three forms of myoglobin can
inter−convert and may degrade through oxygeneration,
oxidation, and reduction reactions when external processes
such as cold storage, cooking, and irradiation are applied (Liu
and Chen, 2000; Liu et al., 2003). The absorption bands
around 458, 490, 540, and 574 nm represent the effects of
various conformational structure of myoglobin, while the
absorption bands at 740 and 835 nm could be a combination
of lipids, water, and various forms of myoglobin absorptions.
These absorption areas form a major base for spectral
differentiation of wholesome chicken from unwholesome
chicken.

PC 1 and PC 2 scores for the 140−bpm training set are
plotted in figure 6. The PC 1 scores show wide variation for
both wholesome and unwholesome samples. However, for
the PC 2 scores, a pattern is evident in which the wholesome
samples are positive and the unwholesome samples are
negative, with some slight overlap. The loadings associated
with PCs 1 and 2 are plotted in figures 7a and 7b. The loading
weights, being regression coefficients at specific wave-
lengths for a PC, show the relative contribution of those
wavelengths to the amount of spectral variance for which that
PC accounts. Thus a large positive or large negative weight
indicates a significant contribution for the corresponding
wavelength. The loading shapes of both PC 1 and PC 2 are
similar to that of the second difference spectra, but the
wavelength region at 490 nm is much more prominent in
PC 2 than in PC 1. Metmyoglobin has been correlated to this
region (490 nm), while oxymyoglobin has been correlated to
the regions of 545 and 560 nm (Liu et al., 2000) that are also
evident in PC 2. Liu et al. (2000) found more variation in
metmyoglobin for diseased chicken meat, concluding it to be
a degraded form of both oxymyoglobin and deoxymyoglo-
bin.

Figure 6. PCA score plot of components 1 and 2 for wholesome (circle) and
unwholesome (triangle) chicken carcasses.

Figure 7a. The first principal component, determined from principal com-
ponent analysis on training set data.

Figure 7b. The second principal component, determined from principal
component analysis on training set data.

Figure 8 shows the Root Mean Square Error of Cross−Val-
idation (RMSECV) for the 140−bpm training data set. With
one−sample−out cross−validation, the error continued to
decrease with each additional PC. Although the last signifi-
cant incremental decrease in error occurs with PC 5,
additional PCs do not appear to describe noise variance and
result in further, though slight, error reductions. The
180−bpm training data set showed similar results.

Two back−propagation rules (delta and cumulative delta)
and two transfer functions (sigmoid and tanh) were used for
a total of four models (table 1) for each training/test/valida-
tion split of data. As expected, results from the training data
used for the neural network learning process at both 140 and
180 bpm were generally high, around 97%. For 10−, 20−, and
30−input MLP, testing set and validation set results for each
of the four models, using spectral data acquired at 140 bpm,
are shown in table 2. Using as inputs the scores calculated
from 10 PCs, the overall classification accuracies ranged
from 83% to 90%. With 20 input nodes, the classification
accuracies improved, with Model 1 achieving the best
accuracies.  For the test data set, 96% of wholesome carcasses
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Figure 8. Cross−validation RMSECV curve for training set data.

and 92% of unwholesome carcasses were correctly classi-
fied, for an average of 94%. For the validation set, 95% of
wholesome and 92% of unwholesome carcasses were
correctly classified, for an average of 93.5%. With 30 input
nodes, the classification accuracies did not increase signifi-
cantly. In general, the models using the delta−learning rule
performed better than those using the cumulative delta−
learning rule. It was also noted that the classification

Table 1. Neural network models.

Model Learning Rule Transfer Function
1
2
3
4

Delta
Delta
Cumulative Delta
Cumulative Delta

Sigmoid
Tanh
Sigmoid
Tanh

Table 2. Classification accuracy at 140 bpm for the 
10, 20, 30 input nodes to the MLP.

Wholesome
Carcasses

Unwholesome
Carcasses

All
Carcasses

10 input nodes
Model 1 92

90
88
89

90
89.5

Test
Validation

Model 2 91
91

88
87

89.5
89

Test
Validation

Model 3 90
89

88
84

89
86.5

Test
Validation

Model 4 91
90

78
76

84.5
83

Test
Validation

20 input nodes
Model 1 96

95
92
92

94
93.5

Test
Validation

Model 2 95
94

92
92

93.5
93

Test
Validation

Model 3 93
94

92
91

92.5
92.5

Test
Validation

Model 4 93
91

90
89

91.5
90

Test
Validation

30 input nodes
Model 1 95

94
93
92

94
93

Test
Validation

Model 2 95
95

92
91

93.5
93

Test
Validation

Model 3 94
93

92
92

93
92.5

Test
Validation

Model 4 90
91

90
90

90
90.5

Test
Validation

accuracies of Model 4, using the cumulative delta learning
rule with the hyperbolic tangent transfer function, was
consistently lower than those of the other three models.

Table 3 shows the testing set and validation set results for
the models using spectral data acquired at 180 bpm. The
classification accuracies of the four models ranged from 81%
to 88% when using 10 input nodes, and increased for 20 and
30 nodes. With 30 input nodes, Model 1 using the delta
learning rule and sigmoid transfer function achieved the
highest classification accuracy, correctly classifying 95%
wholesome and 92% unwholesome carcasses in the test set,
and 94% wholesome and 92% unwholesome in the validation
set.

In general, disease conditions in chickens are often
evidenced by changes in skin color and the tissue composi-
tion that are detectable through visible and near−infrared
spectroscopy. A real−time inspection system must have the
capacity for rapid spectral measurement, data processing,
and classification computation within a limited time window.
In addition, poultry inspection can present a dynamic
situation as populations of chickens may vary between
different breeds, seasons, or dietary regimens. The results of
this study show that a Vis/NIR inspection system can
successfully operate at high speeds to classify wholesome
and unwholesome birds. Also, the use of MLP for classifica-
tion provides the potential for adaptive inspection to handle
changing poultry populations. Creating such automated
calibration models that can be updated online will be tested
in future studies.

CONCLUSIONS
A new Vis/NIR spectroscopic system was developed using

modularized software components and was able to collect

Table 3. Classification accuracy at 180 bpm for the
10, 20, 30 input nodes to the MLP.

Wholesome
Carcasses

Unwholesome
Carcasses

All
Carcasses

10 input nodes
Model 1 87

89
86
87

86.5
88.5

Test
Validation

Model 2 87
86

82
85

84.5
85.5

Test
Validation

Model 3 84
82

88
80

86
81.5

Test
Validation

Model 4 78
80

84
82

81
81.5

Test
Validation

20 input nodes
Model 1 94

92
91
90

92.5
91.5

Test
Validation

Model 2 93
91

92
92

92.5
91.5

Test
Validation

Model 3 90
90

92
91

91
90.5

Test
Validation

Model 4 92
91

90
90

91
90.5

Test
Validation

30 input nodes
Model 1 95

94
92
92

93.5
93

Test
Validation

Model 2 93
95

92
90

92.5
92.5

Test
Validation

Model 3 91
90

92
91

91.5
90.5

Test
Validation

Model 4 91
90

90
90

90.5
90

Test
Validation
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real−time spectral measurements for chickens running on
high−speed processing lines. Data analysis and modeling
demonstrated that the system can successfully differentiate
between wholesome and unwholesome birds. At 140 bpm,
Model 1 (using 20 input nodes to the MLP) was able to
correctly classify 95% and 92% of wholesome and unwhole-
some birds, respectively. At 180 bpm, Model 1 (using
30 input nodes to the MLP) was able to correctly classify
94% and 92% of wholesome and unwholesome birds,
respectively. The Automated Poultry Inspector program also
has a module for real−time prediction and the capacity to
accommodate  other functions as needed for real−time
operation. The results of this study show this automated
poultry inspection system based on Vis/NIR spectroscopy is
ready for implementation on commercial high−speed poultry
processing lines for real−time operation. Using such an
automated inspection system would greatly improve overall
production efficiency of processing plants.
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